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Abstract

We presently look at ways of numerically analysing distributions within sequences. Begin-
ning with the problem of what feels like a failure of the timetabling at my school, this work
walks through the process of developing a statistical method of sequence analysis. Summing
the squares of the distances between occurrences of a limited set of recurring elements gives a
measure of “spread” and summing the reciprocal of these squares gives a measure of “clump”.
We presently give a small number of examples of how these metrics could be implemented and
interpreted.
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1 Introduction
When I received my timetable at the end of the summer holidays, I was blown away by the
distribution of my German lessons. With one teacher, F (in purple in figure 1), we had all our
lessons in four consecutive days out of the two-week rota. This included, to the dismay of the class
and the teacher, a triple period that filled up the entire space between morning break and lunch.

I allocated my free periods into blocks (in a light grey) and then created a small table of lessons
and free period blocks, labelling each with “number”, “clump” and “spread”. This was for the
purpose of planning my time: the vision was that I’d look at the “number”, “clump” and “spread”
of my four blocks of frees and decide to do one thing (e.g. Physics revision) in one block and
another (e.g. writing hand-wavey musings in Overleaf) in another block. Remember, this was at
the beginning of the year when I could be bothered with such silliness as time planning .

But this did give me something to think about as I sat bored in physics: is there a way to
formalise the thoughts I had at the beginning of the year? This entire document is essentially an
exploration of my various different hunches, some of which turned out to reveal some interesting
results and some of which turned out to be completely made up.
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Figure 1: My 2024-25 timetable, colour-coded

2 Some Setup
We begin presently with some definitions:

A sequence L = L1, L2, . . . where Li ∈ L for finite L.

Then we define the “sequence of distances” of L:

∆(L, l) : l ∈ L is such that ∆(L, l)i = j − k (1)

where Lj = Lk(= l) are the ith and (i− 1)th occurrences of l ∈ L

This gives that the number of differences is the same as the number of occurrences of l in L:

|∆(L, l)| = |L(l)| (2)

The point of ∆ is because we want to be working relatively. Whether one has German on
Tuesday or Thursday is a useless fact unqualified: what is more interesting is if, for example, one
hasn’t had German since the Wednesday before. To put the (poorly notated) definition in English,
the sequence ∆(L, l) is the sequence of differences between the places of two ls in L.

Of course the order of elements in L matters (it is a sequence, after all) but the order of elements
in ∆ doesn’t matter for the purposes of this PDF. It is simply a sequence because Why Not. Hence,
whether we choose Lk to be the (i+ 1)th or (i− 1)th occurrence is irrelevant, to the point where
it’s changed twice in the writing of this document.

There is one reconciliation that must be made to make the facts given true and useful: although
the timetable given in figure 1 is laid out starting in one corner and ending in the opposite, it is
a cyclic pattern. If i = 1, then the (i − 1)th corresponds to the final, and it is as if we count
backwards off the beginning of the timetable and continue counting as we go back onto the end
and to the last occurrence of l. Since this is essentially a division of the size of L by its ls, this
gives us

∑
d∈∆(L,l)

d = |L| (3)

The next definition we give is a simplification of ∆(L, l):

∆(L) =
⋃
l∈L

∆(L, l)(:= ∆) (4)

thus |∆| = |L| (5)
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Figure 2: My 2024-25 timetable but with only teacher “F”

This could just as easily be defined from the same angle that was used in (1), but we don’t have
the effort to do that presently. The order is irrelevant for the arithmetic in the present work, but
for the sake of examples we order them back into the order in which they were in L. The notation
of dropping the argument of ∆ is simply to make writing slightly quicker and less messy later on.

(5) is also a convenient extension of (2). Is it not lovely when maths is consistent?
Since this has all been rather abstract thus far, let us take a concrete example with a “mini-

timetable” made up of a single five-period day that repeats eternally, to aid the reader’s compre-
hension (see table 1).

L ∆(L,“F”) ∆(L,“R”) ∆(L,“C”) ∆

F 2 2

R 4 4

R 1 1

F 3 3

C 5 5

Table 1: small-scale examples of ∆

When it comes to applying these methods to a full-length timetable, there are certain decisions
that have to be made one way or another. For the sake of usefulness in the present work, we say the
following: when one day ends, the next begins immediately (that is to say, the difference between
Period 8 and Period 9 on a Tuesday is the same as the difference between Period 9 on a Tuesday
and Period 1 the following Wednesday); lunchtimes, break times and weekends are completely
ignored (that is to say, the aforementioned difference is also the difference between Period 9 on a
Friday and Period 1 on the following Monday, and between Period 6 and Period 8 on any same
day). To some extent, we make these points for the sake of simplicity when it comes to interpreting
the results later down the line.

3 Working It Out
Now let us think about defining these three terms that I used no more than qualitatively at the
beginning of the term, here in reference to my lessons with one of my German teachers, denoted
with “F” (see figure 2). Beginning with “Number” because that is trivial to define, we quickly see
that some units would help us. The Système international d’unités can’t help us much here: there
are a lot of seconds between two lessons. All numbers henceon will instead be given in ”periods” -
in reality, forty minutes, but in abstract, any length.
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3.1 Number
The “Number” of periods with the teacher in question can be counted by an infant. It is 7. Since
our units are well-defined (lessons certainly feel like they’re moving slowly enough not to worry
about relativistic effects...), we count a “double-” or “triple-period” as 2 or 3 separate periods
respectively, which is an attitude that will help us later. By (2),

N(∆(L, l)) = |∆(L, l)| = |L(l)| (6)

3.2 Spread
It is no doubt that the lessons of the teacher highlighted in figure 2 are “poorly spread”. What do
we mean when we say this phrase though? In this phrase, we’re referring to the large timeframes
that have absolutely no lessons with this teacher: a frame of 55 periods, no less, which is over
two-thirds of the entire timetable. A ”well-spread” distribution of lessons with this teacher would
have these gaps minimised.

Thus, we want to perform some sort of iterative calculation on our sequence of gaps ∆(L,“F”)
that puts weight on the longer gaps. We could attempt a sum of ∆ since the longer gaps would
thusly account for a larger proportion of the sum. However, the reader who reads can read that
the sum of ∆, as per (3) is just the total number of periods, |L|.

Instead, we want to put an extra weight on our longer gaps. Luckily, larger values have an
in-built tool to weight them favourably: themselves. We can weigh the sum by the elements
themselves, which is known to the common mathematician as “squaring” it. Thus, we’re dealing
with some variation of

∑
d∈∆(L,l)

d2 (7)

However, the same readers who happen to be reading closely will realise that this is almost
what we wanted: a poorly-spread distribution will have larger gaps, and thus this sum will be
disproportionately larger. Thus, the more useful definition to take is a reciprocal of (7).

There is one final amendment to this definition: currently, a sequence of twenty lessons dis-
tributed evenly throughout the week gets an unfavourable score in comparison to a sequence of
two lessons distributed similarly evenly, by simple virtue of there being more lessons. This is an
explicable advantage (it’s unfair to expect the latter sequence to populate the timetable as evenly
as the former), and so a combatable one: we divide through by the number of lessons (which, by
(2) is also the number of gaps). This finally gives way to our definition of “spread”:

S(∆(L, l)) =
1

|∆|

 ∑
d∈∆(L,l)

d2

−1

(8)

3.3 Clump
Let us now whisk through the same process for the word “clump”. This is in fact a poor choice of
word as one’s immediate thought may be that “clump” is the antithesis to “spread”, as you can
see that the lessons highlighted in figure 2 are “not very spread” and “very clumped”. However,
let us treat it as a separate phenomenon and instead we will find that a distribution of lessons can
in fact be both “well-spread” and “clumped” or “poorly-spread” and “not clumped”.

When we say that the lessons in figure 2 are “clumped”, we are this time saying that the majority
are in close proximity to one another. Specifically, we refer to the fact that most distances in ∆
are very very small. In the case of the “triple-period” on Thursday, there are two elements of
∆(L,“F”) that are just 1! (Interpret that as either surprise or factorial, because it is, by chance,
unambiguous.) In a similar fashion to how we defined “spread”, we use the reciprocal squares to
place weight on these shorter values. This also means that we no longer have to deal with larger
values mapping to “less clumped” distributions, as reciprocating our smaller distances gives us a
larger “clump”. This gives us the following definition of “clump”:

C(∆(L, l)) =
1

|∆|
∑

d∈∆(L,l)

d−2 (9)
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L ∆(L,“F”) ∆(L,“R”) ∆(L,“C”) ∆

F 2 2

R 4 4

R 1 1

F 3 3

C 5 5

Table 2: table 1 repeated for your convenience

l ∈ L N(∆(L, l))
∑

d∈∆(L,l) d
2 S(∆(L, l))

∑
d∈∆(L,l) d

−2 C(∆(L, l))

F 2 13 1
26

13
36

13
72

R 2 17 1
34

17
16

17
32

C 1 25 1
25

1
25

1
25

Table 3: small-scale examples of N , S and C

4 Interpreting the Values
4.1 Relatively
Let us use the same “mini-timetable” as in table 1 to give some sample values for C and S, as it’s
easy to see where values come from on such a small scale: see table 3.

Perusing table 3 and comparing to what we would qualitatively say about the “mini-timetable”
(reproduced in table 2), we can see that it’s pretty spot-on: teacher “C” has the most spread-out
lessons, but teacher “F” is very close behind, for example, while “R”’s “clumpedness” is definitely
coming to light. There is a small failure of using a small sample size, in that the scaling suffers
a little, and small discrepancies arisen by the number of lessons don’t hide themselves. Ignoring
that, we can see how this metric has potential.

4.2 (Somewhat) Absolutely
However, this is only good for comparing different lessons within one timetable. Since we have
a ∆-sequence for the entire timetable, performing “NCS-analysis” on that is, in its current state,
not very useful as we’d have nothing to compare it against, or we may find ourselves comparing
apples to pears. We presently briefly restate our N , S and C functions slightly more neatly and
using the ∆-sequence of the whole of L. It is now that we remind the reader that “∆” unqualified
represents this complete sequence, ∆(L).

C(∆) =
1

N(∆)

∑
d∈∆

d−2 (10)

N(∆) =
∑
d∈∆

d0 (11)

S(∆) =
1

N(∆)

( ∑
d∈∆

d2
)−1

(12)

Unfortunately for the reader, we’re unable to align the equations exactly as we’d like while still
giving them different reference numbers. The reader will have to cope. However, this formatting
does demonstrate the relationship between the three functions: if one ignores the reciprocating
adjustment we to S, they’re in a neat series. The reader with a particularly tenacious memory will
remember that (3) fits into this progression, but this is just at a superficial level as (3) references
∆(L, l) rather than ∆. However, we will return to this insight later.

(11) can be rewritten as the following, and thus by (5) as
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N(∆) = |∆| = |L|

Using the same order of thinking as with section 3, we begin with regularising values of S. S
is formed from the sum of squares: if we take a step back, we have the average of squares,

1

|∆|
∑
d∈∆

d2 (13)

The average of squares, which we henceon notate as µ̂2
S to highlight that it’s weird, can be

square-rooted to give a plain “average”: we’re simply undoing what we did to construct µ̂2
S to get

an ordinary average of gaps but “skewed” in favour of longer gaps, as per the processes in section
3. This gives

µ̂S =

√∑
d∈∆ d2

|∆|
(14)

And similarly,

µ̂C =

√
|∆|∑

d∈∆ d−2
(15)

Simple dimensional analysis reveals that these retain the same units as the elements of ∆ to
begin with: thus, we can interpret the values of µ̂C and µ̂S to be the average number of periods
between a lesson and the next time that lesson occurs, weighted in favour of clump and spread
respectively.

For example, the “mini-timetable” in table 2 yields the following values:

µ̂C = 1.848 . . .

µ̂S = 3.317 . . .

It was roughly at this point in the present article’s draft that a friend pointed out the similarity
between the formula for “spread-weighted mean” µ̂S in (14) and the formula for “standard devia-
tion” σ of a dataset. As far as we are concerned in the present work, this is purely coincidental.
However, any further insight from the reader is welcomed.

4.3 (Somewhat) Better
The reader is forgiven if the end of the last subsection felt anticlimactic. The numbers and methods
outlined therein were developed after the methods in the proceeding subsection herein, but were
presented first due to slightly more elegance and slightly less complexity. We do not see much use
in µ̂S|C , hence why they were notated with a hat (such that we can justify ignoring them because
they are ugly).

Instead, we take a step back to ∆(L, l) and attempt to use the same means to evaluate an
equivalent of µ̂S|C for each l. Most of our thinking work has, however, been done in the preceding
subsection, with just one major addition.

The perceptive reader with an English Literature qualification will recognise that the sum from
(3) remains unused. Now that we are dealing with ∆(L, l) we can complete the pattern if not only
because it is pleasing to typeset:

∑
d∈∆(L,l)

d−2
∑

d∈∆(L,l)

d−1
∑

d∈∆(L,l)

d0
∑

d∈∆(L,l)

d1
∑

d∈∆(L,l)

d2 (16)

(16.-2) and (16.2) are used in the definitions for C and S respectively, while (16.0) is triv-
ially N(∆(L, l)) = |∆(L, l)|. If anyone would like to come forward with a use-case or theoretical
explanation of (16.-1), they would be more than welcome.
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We use (16.1) to define the conventional “mean” of ∆(L, l). This is hopefully not a new idea
to the reader, although we do denote it with a hat to continue the idea that it is the “imperfect
mean” or the “mean” of ∆(L, l) for some l:

µ̂ =

∑
d∈∆(L,l) d

|∆(L, l)|
(17)

This gives us something to compare µ̂C|S against. Rather than succumb ourselves to the
“mini-timetable” again, this property is demonstrated with the timetable represented in figure 1:
see figure 4.

Figure 3: My 2024-25 timetable, repeated from figure 1 for your convenience

Figure 4: numerical examples of variables given thus far performed on the timetable in figure 1

A brief explanation of the layout of figure 4 may be in order. The rows are headed by the name
of each block (“b” meaning “blank” or “unlabelled”, and “a” going unrepresented due to there
only being three “a” periods in the fortnight), corresponding (almost) exhaustively to the values of
l ∈ L. Columns B through F correspond to the five expressions in (16) respectively, while columns
G, H and I correspond to C(∆(L, l)), N(∆(L, l)) and S(∆(L, l)) respectively. Columns J, K and
L are, as one would expect, µ̂C , µ̂ and µ̂S , despite the lack of hat in the column heading (which
proved confusing later down the line). Columns G, I, J, K and L have each been rounded to a
number of decimal places for brevity and legibility.

Some numbers suddenly make sense when looking at a table. For example,
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∀L ∈ L,
∑

d∈∆(L,L)

d1 = |∆| =
∑
l∈L

N(∆(L, l)) (18)

We can also begin making observations similar to those we made looking at the sample tables 2
and 3. For example, all blocks appear mostly in “double-periods”, with the exception of “b”, which
appears (by its nature) mostly in “singles”: this is reflected in its µ̂C being closer to its µ̂ than any
other l. The infamously poorly-spaced-out “f” lessons had the highest µ̂S/µ̂ ratio and the lowest
µ̂C/µ̂ ratio of any lesson blocks, even though the latter was by a smaller margin. This last fact is
down to the fact that although the lessons are highly clumped, it’s relatively not to a surprising
extent. At my year group, the overwhelming majority of lessons are “doubles” (for better or for
worse) (which is also reflected in the artificial segmentation of free periods), and “F” has just a
good a good proportion of “singles” and “doubles” as any other block. Perhaps the choice to treat
these “doubles” as two “singles” is limiting the scope of this specific implementation.

Now to evaluate the table as a whole: instead of combining the blocks when they were in
sequence form (as we did with ∆) we combine their respective µ̂C|S . A weighted average has
exactly the properties desirable. Although it produces a clunky formula for our “clump” and
“spread”, it cancels out for the “mean” due to the relation in (18).

µ = |L| (19)

(We briefly interject to alternatively offer the following ugly definition of µ, which doesn’t
require the proceedings to be calculated for all l ∈ L, as was done in the example where “A” was
omitted in the calculations. The discrepancies are small either way, but the following expression
gives a worse definition of “mean” and a better comparison point for µC|S .)

M ⊂ L : µ =
|L|

∑
l∈M 1∑

l∈M N(∆(L, l))

Thus, in the last few proceeding definitions, any L can be swapped for some M (and thus |L|
for |L(L)|) with limited loss of accuracy as long as M ≈ L and/or L(M) ≈ L.

µC =

∑
l∈L µ̂C(∆(L,l))N(∆(L, l))

|L|
(20)

µS =

∑
l∈L µ̂S(∆(L,l))N(∆(L, l))

|L|
(21)

If the reader feels the compulsion to expand (20) and (21) with the square roots given in (15)
and (14) respectively, they must first remember to change the sequence in question from ∆ to
∆(L, l) and then to regret their life choices.

What finally remains to round off is to give the values that we have been working towards
for the duration of this subsection that has frankly gone on too long. With reference to the L
reproduced in figure 3 and using M = L \ {“A”},

µ = 9.35 . . . µC = 1.55 . . . µS = 14.89 . . .

5 Sample Implementations
We presently present some exemplars on how this “NCS Analysis” could be used to make obser-
vations on various topics.

The majority of these examples take data from the author’s personal collection: such person-
alised data are not to be taken seriously. In fact, this article is written as part of a series of articles
to celebrate the end of the fourth year of “a fact a day”, as the annual tradition of doing primary
research for once. This year’s New Year’s Eve “fact of the day” is a collection of statistical analyses
of various facts about the author themself, of which this section is forming a component.
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5.1 Timetable Verschlimmbesserung
Verschlimmbesserung (literally something along the lines of “worse-bettering”) is a German word
that can only be translated roughly to “disimprovement” or “enshittification”, but instead it refers
specifically to when attempts at improvement just make it worse. This is a phenomenon observed
particularly among the bureaucratisation and digitalisation of society, which is exactly what’s
been happening to the timetabling process at the author’s school. Timetabling over a thousand
timetables in over a hundred rooms for 90 periods a fortnight is understandably a formidable task,
but recently the way it’s been done has changed and with it, many have reported a worsening of
timetables. This is to what I attributed my surprising distribution of German lessons, as described
at the beginning of section 1. However, we presently outline that this is not the case:

Timetables from three years were serialised and “NCS Analysed” with exactly the same methods
as demonstrated on my timetable of the academic year 2024-2025 in section 4.3. The data from
2024-2025 is the data as given previously, and the data from 2023-2024 and 2022-2023 are both
timetables also from the same year group as the first given one. A small amount of conforming was
done to make the timetables as comparable as possible, as different people have different numbers
of teachers and similar discrepancies can exist. (Further Mathematics, for example, is taught by
four teachers simultaneously, whereas Physics only by one.) The results are surprising (all values
rounded to three significant figures) and reproduced in table 4.

Timetable of µ µC µC/µ µS µS/µ

’22-23 11.9 1.50 0.127 21.0 1.77

’23-24 10.7 1.45 0.135 18.8 1.75

’24-25 9.35 1.55 0.166 14.9 1.59

Table 4: “NCS Analysis” on timetabling development over three years

These results provide counterexample to the anecdote given in the introduction: that the
timetabling has not been getting markedly worse in its distribution of lessons, perhaps even better.
This is by no means conclusive, as analysis was performed on an extremely small sample size over
an extremely short developmental timeframe. Moreover, this is just one descriptive measurement:
one could argue that the “triple period” the German class this year received is enough to describe
the German class’s timetable this year as verschlimmbessert. Similarly, the number of clashes that
have been timetabled in this year has gone up from more-or-less zero to a non-negligible number.
However, by the measures of “clump” and “spread”, there are certainly differences between these
almost-randomly chosen timetables from three different points in time.

5.2 Focussing
I keep a log of how “focussed” I am for every activity that I do. The data are integers between
1 and 5 and corresponds purely to the ability to focus, dubbed “focability” (so not necessarily on
one thing, as this is logged by a separate variable, “monobility”). Each datum, as we use it in this
subsection, comprises a starting timestamp, an ending timestamp, an activity label, and a set of
values in [5] (for example “focability” and “monobility”). For this analysis, we simply took the
“focability” data as a one-dimensional array and ignored the timestamps. This does mean that
the results are limited in their scope because there may be unaccounted-for biases when we ignore
all durations. (Some “focability” data arguably should’ve held more weight, as they could last 12
minutes or 12 hours.)

“Focability” data were taken from the Master Log (called “O’Brien”, for those that know it
well) from a 130-day period between early August and early December 2024, forming a total of
1308 values. To conform the data to our processes, L is the “focability” sequence and L is the
set of integers [5]. Unlike the implementations in sections 3 and 4, where the timetables “looped
round”, our sequence is now in a completely linear shape. This means that either the first or last
instance of each l ∈ L cannot be mapped to an element in ∆(L, l) and thus |∆(L, l)| = |L(l) − 1|
and by its definition in (4), (5) changes to |∆| = |L| − |L|. These changes are not given their own
line because they are entirely ignorable facts, given thought-out notation.

Before performing the analysis, it may prove useful to speculate some hypotheses on what sort
of results are informative. The threshold used for inputting a 1 or 5 (the most extreme values) are
more stringent than thresholds between other numbers, as it’s more remarkable when these inputs
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are given (as the inputter must be in a rut of un“focability” or a glut of high “focability”). This
is useful only to a certain extent: too few 1s or 5s gives little sample size on other information
regarding gluts and ruts. We can check the quality of these personal and entirely subjective
thresholds by checking whether N(∆(L, l)) is roughly normally distributed over l ∈ L.

There is another fact of the nature of inputting that could present itself herein. The data are
recorded in a spreadsheet by a computer program that takes a numerical input on command from
a panel and appends it to the list. However, if the numerical input is empty but the timestamp
inputs are not, then the input is recorded as the same l as the previous value. This is for ease of
inputting larger quantities of data, but there could also be the fear that values become “sticky”
(where the inputter is likelier to leave the “default” value than change the input, especially when
the “focability” is low) and thus not truly reflective of the real-world data. This is difficult to
distinguish between ordinary time taken for “focability” to change (humans are, after all, slowly
fluctuating beings), but a remarkably high “clump” across the board could point towards this
“stickiness” being an issue.

Moreover, as just mentioned, the rate of fluctuation and variation and similar attributions will
be shown in the “spread” and “clump” of the analysis, helping to strategically quantify the scale
of fluctuation of “focability” and possibly aiding with time-planning in the future. (For example,
“clump” holds information on the duration of how long one stays in a particular state, so this could
help interleave high-focus tasks with low-focus tasks with the right timings.)

“NCS analysis” was performed on ∆ first directly, as in section 4.2 with the µ̂ process, and
subsequently on ∆L, l, giving the final µ as in section 4.3. The information given by thus process
is then compared and contrasted.

With respect to ∆ in its entirety,

µ̂C = 1.78 . . . µ̂ = 5 µ̂S = 9.09 . . .

Table 5 holds the breakdown of values with respect to each ∆(L, l). Values are rounded to
three significant figures, with the exception of values for N .

l N(∆(L, l)) µ̂C µ̂ µ̂S µ̂C/µ̂ µ̂S/µ̂

1 108 2.09 12.1 20.7 0.173 1.72

2 369 1.64 3.53 4.73 0.463 1.34

3 288 1.72 3.36 4.32 0.512 1.29

4 312 1.82 4.17 6.62 0.437 1.32

5 125 2.34 10.4 17.0 0.225 1.64

Table 5: values for “NCS Analysis” on “focability” data, broken down by L

Completing the process from section 4.3 using the derived data in table 5,

µC = 1.81 . . . µ = 5 µS = 7.31 . . .

Immediately it is no surprise that µ̂ = µ and that µ̂C ≈ µC , although we must confess that we
did not expect µ̂S to differ so greatly from µS , for which an intuitive explanation cannot be given.
It’s an…exercise for the reader.

With regards to the “stickiness” predicted earlier, µC is certainly particularly low (correspond-
ing to high “clump”). To put this in words, the average time between one state of “focability” and
the next point in time when that state occurred, weighted in favour of “clump”, is less than two
activities. However, looking at table 5, we speculate that this is not due to “stickiness” of inputting,
but rather “latency” or “drag” in the natural fluctuations of the state of the human mind. This is
because the greatest geometric deviation of µ̂C occurred for l = 1 and l = 5, the most “drastic”
inputs and thus the inputs on which one would expect to find the least “input stickiness”. Instead,
this points to the “dragging” of “ruts” and “gluts” being the primary factor of an unexpectedly low
µC and µ̂C . This is a positive affirmation that the collection of data is of sufficiently high quality
to reflect the real world, and that it may be a good capture of an inherently subjective quality.
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The discussion in the paragraph above was notionally on the value of µC , which was very similar
to µ̂C . The primary difference between these two values was that µC took around half an hour of
spreadsheeting by an expert spreadsheeter to evaluate, whereas µ̂C took around five minutes. This
is of course ignoring the processes involved in both paths (e.g. collecting, selecting and conforming
the data) but there is undoubtedly greater levels of thinking and computation required to perform
the “Better” method. Thus, µ̂C|S is presented as an approximation of µC|S .

There is however still merit to the longer process. Having more steps involved makes it more
laborious, but equally more useful: the intermediate steps (values of µ̂C for each ∆(L, l) in this
case) proved useful for resolving the aforementioned discussion.

5.3 Socks
Another beautiful datalog in my archives is a log of my outfit each day. In this log, each day a
“top”, “overtop”, “pair of bottoms” and “pair of socks” forms a datum. Before we perform an
“NCS Analysis”, if the reader would indulge us in validating our nerd credentials with a fact: by
careful design and planning of day-to-day outfits, no two data since 2023-05-20 are the same. That
is to say, no two “outfits” have been the same, to date and for the foreseeable future. This is less
impressive when one considers that the majority heavy-lifting is done by the socks, of which there
are at least 40 listed pairs and at least 20 pairs in regular use - one could argue that they form an
underwhelming component of the “outfit”, but this is not the point.

Due to the large number of socks (33 distinct elements l ∈ L, as of before Christmas 2024 (one
can understand that this number increases rapidly every Christmas)), we discuss the limitations
of “NCS Analysis” thereon.

One fact that was regrettably not given more emphasis in the previous section is that with a
linear log (as opposed to a circular timetable), the first (or last, depending on your choice of k in
(1)) occurrence of each l in L can’t be mapped meaningfully to a value in ∆. Hence it is omitted,
and thus, as discussed previously, by (4), (2) becomes |∆| = |L| − |L|. Previously, this posed no
problem as |L| was negligibly small in comparison to |L|, but here it pushes the value of N in an
unaccountable direction by around one sixteenth, immediately limiting the accuracy of our results
thereto. Multiple pairs of socks were only worn once in this one-and-a-half-year period, and thus
have no effect on the result - perhaps this is fair or unfair.

Due to the large size of L, the “approximation” method only was used (the method notated
with a hat and dealing with ∆ in its entirety). To begin,

|L| = 588 |L| = 33 |∆| = 555 µ̂ = 33

A sample of the data (just 49 entries, thus representing less than a tenth of the whole dataset)
is given in table 6 such that the reader can understand at a superficial level what sort of data is
being dealt with. For the reader’s interest, measures of average and spread for the entirety of ∆
are also given, to highlight its peculiar nature. Obviously ∆ is strictly positive. The most notable
parts are the high standard deviation, and the disparity between non-weighted mean and the value
for µ̂(= µ) above.

mean = 18.6 . . . stdev = 28.3 . . . mode = 6 median = 12

The following results are derived:

µ̂C = 4.28 . . . µ̂ = 33 µ̂S = 33.8 . . .

µ̂C

µ̂
= 0.1298 . . .

µ̂S

µ̂
= 1.025 . . .

The tiny disparity between µ̂S and µ̂ comes from an incredible high value for “spread”: by
and large, most socks were worn remarkably evenly throughout the timeframe. We can vouch
anecdotally that this is not true for a non-negligible number of pairs of socks, which were worn for
a small sub-period and then not again for a long time (for example if they became hole-ridden and
entered the long queue to be darned). This exposes two facts about the processes at play:

Firstly, that removing the circular nature of it means that pairs of socks that were poorly spread
to the point that they never appeared again after a certain point do not have this accounted for.
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5 9 7 12 23 15 88

9 17 11 106 11 9 6

13 8 5 6 14 8 11

4 10 7 18 6 10 9

2 15 15 1 6 26 16

173 4 4 5 1 1 28

9 1 6 4 40 19 1

Table 6: the last 49 elements of the sequence ∆ from the “socks log”
.

That is to say, there are long periods, sometimes spanning the entire timeframe of the data, where
there ought to be a “distance” but due to a lack of element in ∆ this is not accounted for in
“spread” calculations. This may be desirable, but we believe that this could be improved upon.
Possibly treating the linear log as a circular log (“patching it up” from the end to the beginning)
inserts these periods back in in a neat manner, but may also give rise to less clear problems that
cannot easily be seen in the results at 11pm at night. For example (and this is pure speculation),
socks that were only acquired into the log at some point during the timeframe of recording might
not want to have that initial “lead time” to be counted towards their value for µ̂S as this would
be “unfair”. The optimally-spread scenario in this case would involve it being locally well-spread
but not globally as the new sock cannot be spread into the period before which it was adopted,
obviously.

Secondly, the socks with a poorer spread, by virtue of them having become holey or unpreferred,
also have a lower number and thus count less significantly towards the value for µS and by extension
its simulated counterpart µ̂S . This may be a preferred feature of the analysis, helping to give “fair”
treatment to socks that become damaged or forcibly removed. It similarly helps hide the weight of
socks whose preferability changed, but then it comes down to the purpose for which one wishes to
perform the analysis in the first place, if it is not to gauge the magnitude of changes in preferability
and fashion choices.

One alteration to the method that may aid to solve some of these uncertainties could be a
time-based regressive analysis. For example, a new ∆̃(t) could be formed from a window of L
truncated at t and t+ k, similar to how moving averages are computed. This exacerbates certain
aspects of the problems discussed both in this subsection and elsewhere in the document, but helps
to analyse others. The ins-and-outs of how to go about this escape the author at this hour, but
the reader is welcome to practice their spreadsheet skills hereon.

5.4 Flashcard Reviews: Bins
Anki is a FOSS program to help memorisation, based on a spaced repetition system (SRS) and
active recall. I use this program (and associated programs, e.g. AnkiDroid, AnkiWeb) to help
learn vocabulary for language-learning, among other things. One of the core tenets of the SRS is
that one uses the app on a daily basis to optimise long-term memorisation. The power of the SRS
only works when one is consistent. Thus, it may be that an “NCS Analysis” of the review history
of an Anki collection could shed some light, as well as revealing some limitations of the analysis
process.

There is a component of Anki’s culture that involves one’s “streak” (how many consecutive
days one has reviews flashcards) and one’s “heatmap” (the representation of the density of one’s
reviews). One example of the heatmap is given below (cosmetics may vary) in figure 5. The
brighter the cell, the more reviews were performed on that day. It is generally the goal to have
one’s reviews as evenly distributed throughout the heatmap as possible, as this benefits one’s long-
term memory and reduces “buildup” (where one becomes indebted to the rising number of “due”
flashcards due to the SRS algorithm). High “clump” (low µ̂C) could arise from “cramming”, while
poor “spread” (high µ̂S) could arise from poor time-management.

In figure 5 it can be seen how the reviews were most reliable during the period of exams (due
to a regular morning routine incorporating flashcard reviews) and least reliable during the first
term of the current academic year (due to the intensity of schoolwork and the exacerbating effects
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of the buildup of due cards).

Figure 5: an example of Anki’s heatmap, showing data between 2024-1-1 and 2024-12-29

As Anki is completely FOSS, the “revlog” (a database of every review ever) is easily accessible.
A list of timestamps were extracted, corresponding to every time a flashcard was reviewed. In this
case, as of writing, this is a list of 161,999 points in time, given with millisecond-precision. This
was extracted, but needs to be conformed in some manner to L. The process behind the heatmap
was simulated: timestamps from this calendar year (84,023 reviews) were collected into 366 bins,
corresponding to the days of the year, and the size of each bin formed L.

However, because most values of L is in the order of magnitude of hundreds, the vast majority
of elements of L are unique (that is to say, L is very large) and thus ∆ is very small (120). Thus,
each day is rounded to the nearest hundred, instead giving |L| = 11. The results of the analysis
hence are as follows:

µ̂C = 1.82 . . . µ̂ = 11 µ̂S = 18.0 . . .

µ̂C

µ̂
= 0.165 . . .

µ̂S

µ̂
= 1.64 . . .

Performing the same on the entire history, dating back to November 2022, yields

µ̂C = 1.71 . . . µ̂ = 13 µ̂S = 28.7 . . .

µ̂C

µ̂
= 0.132 . . .

µ̂S

µ̂
= 2.208 . . .

Which can be interpreted to affirm that this year’s reviews were a remarkable improvement on
the baseline, with significantly better “spread”. However, if we take just the last academic term
(corresponding roughly to the right-hand third of the heatmap in figure 5, where Mondays-Fridays
are notably unpopulated), then we yield

µ̂C = 1.75 . . . µ̂ = 8 µ̂S = 9.56 . . .

µ̂C

µ̂
= 0.219 . . .

µ̂S

µ̂
= 1.195 . . .

This demonstrates an embarrassing value for “clump” but an unexpectedly passable value for
“spread”. Contrasting with the heatmap, which offers qualitative and hand-wavey results, we can
numericise our hunch to a degree, but equally it is evidently limited as we would have expected
such a poor pattern to yield worse “spread” than is given.

Thus, the “bins” approach is limited in its usefulness. However, we offer an alternative process
in the subsequent subsection:

5.5 Flashcard Reviews: Timestamps
Our data was conformed quite drastically to fit in with the model we developed looking at timeta-
bles. However, a completely different model more suited to this type of data could be more
prospective.

If we take discard the idea of L, everything suddenly becomes simpler, to the point where we
should have begun with this example rather than the timetables. In the case of the timetables,
we have points (the beginning of lessons) dotted through a medium (other lessons), and thus the
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difference between two lessons is given in terms of other lessons. This was also the case in the
two other examples. However, in the case of the Anki review history, we have points (timestamps)
dotted through a medium (the passage of time). This gives a much more absolute and sensible
derivation for ∆:

∆i = Li+1 − Li

As previously, there is an offset due to the fact that Li+1 runs out and there is one element
(the last/first, depending on how one counts it) of L that does not correspond to an element ∆.
This is even less of a problem than previously, as this only applies to one Li, in spite of |L| = ∞
by some twisted interpretation.

As one would expect, this new approach devalidates the definition of “mean” in (19), as this
would give µ = 1∀L. Instead, we give a more intuitive definition of “mean”:

µ̂ =

∑
d∈∆ d

|∆
=

Lfinal − L1

|∆|

Performing this updated process on the 2024 dataset of 84,023 datapoints gives

µ̂C = 3.04 . . . µ̂ = 371.6 . . . µ̂S = 4348.0 . . .

µ̂C

µ̂
= 0.00819 . . .

µ̂S

µ̂
= 11.7 . . . . . .

This at first appears truly shocking, but there is a rational explanation: when one says that
one has reviewed n cards in a day, one often can also say that one has reviewed n cards in a small
kn time period during that day. For me, that k is usually around 6 seconds. When one revises
less in a day, there is still an extraordinarily high clump and poor spread because that revision
occurs in a very small period of time in comparison to the day as a whole. This could be seen as
fair treatment (perhaps one would learn more if one woke up every ten minutes during the night
to review one (1) flashcard) but for this specific case, we perform a “smear”:

This is a programmatic method of redistributing reviews throughout a day. For example, if
a total of twelve reviews were executed on a date, but within two minutes of one another, the
timestamps for these reviews are spread out evenly across the date in question, instead becoming
Midnight, 2am, 4am, etc.. This could arguably lose a lot of precision with respect to when in the
day the the reviews were carried out, but it also more loyally analyses the heatmap reproduced in
figure 5. Unfortunately for the author, these subsections exceed the capabilities of spreadsheeting
and enter the realm of Shoddy Python Code.

After this “smearing” (which is significantly more computationally intensive, unfortunately)
was performed on the 2024 dataset, “NCS Analysis” was performed on the new set of timestamps
(all averages rounded to the nearest integer):

µ̂C = 180 µ̂ = 374 µ̂S = 1282

µ̂C

µ̂
= 0.6575 . . .

µ̂S

µ̂
= 4.674 . . .

Since these are all values with units of seconds, they need to be translated to “number of cards
per day”, which is proportional to the reciprocal of these values. ĥC|S is used to denote these
values.

ĥC = 480 ĥ = 231 ĥS = 67

These are very revealing values and much more useful than those given before. An average
of 231 cards per day is good and a stone’s throw from my target, and the fact that these stray
comfortingly little when weighed by “clump” and “spread” is equally reassuring, as 67 or 480 cards
in a day points to no failure, either by neglect or mismanagement.
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This year, an active effort was made as a component of my New Year’s Resolution to improve
the usage of Anki and consistency thereof. It’s reassuring that, in spite of the cliff-fall in the last
third, good usage was made. To aid these comparisons and evidence the goodness and success of
2024, we give the same analyses for the other two periods also outlined in the previous subsection,
with all integers given having been rounded.

For the entire 26-month history:

µ̂C = 199 µ̂ = 420 µ̂S = 4043

ĥC = 434 ĥ = 206 ĥS = 21

µ̂C

µ̂
= 0.474 . . .

µ̂S

µ̂
= 9.64 . . . . . .

And for the last third of 2024:

µ̂C = 217 µ̂ = 510 µ̂S = 2173

ĥC = 398 ĥ = 231 ĥS = 40

µ̂C

µ̂
= 0.426 . . .

µ̂S

µ̂
= 4.26 . . . . . .

Here’s to another year, taking all the successes of 2024 and building upon the failures! May
2025 treat us all better.
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